Extended Tagging in Requirements Engineering

Giinther Fliedl, Christian Kop, Heinrich C. Mayr,
Jirgen Vohringer, Georg Weber, Christian Winkler

University of Klagenfurt

Abstract. In this paper standard tagging mechanisms are discussed and partly
criticized. We propose a semantically and morphosyntactically enriched
mechanism in which many of the shortcomings of standard POS-taggers are
eliminated. Therefore rule based disambiguation steps are presented. They in-
clude mainly a specification of contextually motivated verbal subcategories. We
need this fine grained system for better preprocessing of requirements texts
which have to be highly explicit and non ambiguous. This linguistic preproces-
sor can support an interpretation tool used to extract semantic concepts and re-
lations for the requirements engineering step in software development.

1 Introduction

Classical tagging approaches use standardized (POS) tag sets. Such kind of standard-
ized tagging (e.g., Brilltagger [1], TnT [2], Q-Tag [11] Treetagger [8], [10] etc.),
however, show weakness in the following three aspects:

—  Tags like ‘“VAINF’ provide only basic categorial and morphological information;
- Ambiguity cannot be made explicit;
~  Chunking and identification of multiple tokens is not possible.

To avoid such deficiencies, we developed a system called NIBA'-Tag which al-
lows tagging of German with an extended tagset, and inheritance of morphosyntactic
and morphosemantic features. Morphosemantic tagging in our sense is labeling words
by morpho-syntactically relevant semantic classifiers (sem-tags like ‘tvag2’, ‘eV’,
‘indef, ‘poss’, etc.; see Appendix 1 for a rough comparison with the Treebank [7]
STTS [S*99]), It has proved to be an efficient method for extracting different types of
linguistically motivated information coded in text. The XML-Tagger-output t'or the
German PP (=P2) Bei Eintreffen des Auftrags in Table 1 shows how the tagging re-
sult is structured.

As can be seen in Table 1, our tagging system has the following linguistic compe-
tence:

" NIBA is a German acronym for Natural language based Requirer.nents Engineering.
The project NIBA is supported by the “Klaus Tschira Stiftung Heidelberg”.

© A. Gelbukh (Editor)
Advances in Natural Language Processing
Research in Computing Science 18, 2006, pp. 49-36



50 Flied! G., Kop Ch., Mayr H., Véhringer J., Weber G. and Winkler Ch.

Table 1. Categories and features generated by NIBA-TAG

Bei fon) Eintreffen (arriving) eines (of-the) Aufirags (order)
JowerCase="bei"  lowerCase="eintreffen" lowerCase="eines”  lowciCase ~"auftrags”
id "100713" il "352487" 1d-"976515" id "413424"
Catcgoiy - p0 Category — v0 Catcgory — det0 Catecgory - n0
tape-"temp” referlo="eintreffen" type="temp” relerlo="Auftrag"
referid="8264" referid-"18541"
base-form="eintreffen" hase-form="Auftrag"
ps3 sg praes_ind="trifft" num="sg" numerus="sg"
kas="gen" kasus="gen"
gen-"masc” cenus- "masce”

partikei="ein"
verbelass eV
verbelass-number- "2"
pp="eingetroffen”

1. The assignment of POS-tags enriched with morpho-syntactic features (e.g., Cate-
gory = p0/v0/n0);

2. Morpho-semantically motivated subclass tags for verbs (e.g., verbclass = eV)

3. Identification of unknown words through assignment of affix-rules (e.g., kas =
gen of Auftrags);

4. Extended lemmatizing (e.g., referTo = eintreffen).

This competence is used in the requirements engineering process. The rest of the pa-

per is structured as follows. In chapter 2 some verb classes with high frequency are

discussed. In chapter 3 we will represent the tagging rules. In chapter 4 we argue for a

multilevel interpretation process during requirements engineering.

2 Verbclasses Used by NIBA-Tag

Since a merely morphological classification of verbtags as commonly practised by
most taggers is not suitable for many tasks in the field of requirements engineering, a
subclassification of the respective tags with respect to the verb arguments is neces-
sary.

In our system German verbs are categorized with respect to the 26 verb classes.
which are divided into 12 main-verb classes [3]. In the following we list definitions
and examples of the top six most frequent tags for verb classes:

Verbclass 2 - eV: Ergative Verbs trigger non-agentive subjects (e.g., sterben — (o die).

Verbclass 3 - iV: Intransitive verbs which need only one argument (the subject) (€8
schlafen - to sleep)

Verbclass 6 — psychV: bivalent verbs with a psychologically motivated goal argy-
ment. No passivation is possible for that kind of verbs. (e.g., drgern — to annoy)

Verbelass 7 - tVag/2 verbs select two arguments: an agent role and a thema role-
These verbs allow passivation; (e.g., lesen — to read).



Extended Tagging in Requirements Engineering 51

Verbclass 7.2 — tVag2pp: Transitive Verbs with prepositional object. (e.g., hinein-
schneiden — cut into sth.)

Verbclass 8 — tV3: Ditransitive Verbs with an agentive subject and 2 objects (e.g.,
Der Kollege gab mir einen Rat - the colleague gave me an advice).

Verbclass 11 — tV2: Bivalent verbs with a non agentive subject and a thematic object
(e.g., Der Schwamm absorbiert die Flissigkeit — the sponge absorbs the liquid).

3 Substantial Characteristics of the Tagging System

The system can be characterized through the following features and components [4]:

— A fine grained categorization system for open and closed German word classes.
Lexicon categories are subdivided into semantically motivated subclasses, la-
belled with attributes. See Appendix 1;

— A fully functional lexical database with an integrated rule component for the op-
tional generation of full German word forms;

- Export — and import functionality providing the import of simple structured excel
sheets and export to XML, which can be converted to a tagger specific lexicon
LeXML, a Berkeley DB);

-~ An extended rule based Perl tagger, including different types of context rules.

Subsequently, much effort had to be spent in the definition of context rules facilitating
the disambiguation during the tagging process [5].
The following rule-types have been developed:

Feature filtering and generation rules;
Categorization rules;
Conversion rules;
Disambiguation and deletion rules;
Priorisation rules;
Chunk rules.
Feature filtering and generation rules Many features of lexical units are context-
dependent; e.g.,

Bei[loc] — Bei [temp]/[Verbal noun]

e.g., Bei Eintreffen des Auftrags (on arrival of the order)

[Aux0] — [pass)/[past participle of tvag2, tv3]
Categorization rules  Categorization rules are part of the lexicon component, ini-
tialized through inflectional expansion of basic word forms for the purpose of gener-
ating paradigms. NTMS based part-of-speech tags divide words into morphosyntacti-
cally and semantically motivated categories, based on how they can be combined to
build up sentences.
Conversion rules Conversion rules are typical local context rules. They operate on
lexically generated categorizations to transform them into different word classes, e.g.,
eintreffen (to arrive) v0 [eV]-> n0. In the XML-output, the original categorial grid
remains visible.

cUus LN -



52 Flied! G., Kop Ch., Mayr H., Vohringer J., Weber G. and Winkler Ch.

Disambiguation and deletion rules  They delete contextually not acceptable at-
tribute values. e.g.. the accusative in the context of ‘des’. Attributes which cannot be
disambiguated. are being deleted likewise.

Priorisation rules  During the tagging process attribute values are counted, whereag
those with high frequency are priorized.

Chunk-rules  Chunk rules refer to the results of the basic tagging process building
phrasal categories from lexical categories, mainly N3 (NPs) and P2 (PPs). NPs are
identified as expansions of nouns.

4 The NIBA Tag within Requirements Engineering

Niba Tag is currently used in the Requirements Engineering Project NIBA. In Soft-
ware Development, Requirements Engineering is an important phase with the objec-
tive to find out the structural, functional and dynamic aspects of the software [9]. Ex-
tracting of functional, structural and behavioural aspects is thus one of the main tasks
during this step. For the purpose of modeling requirements a modeling language
called KCPM (Klagenfurt Conceptual Predesign Model) with a small set of modeling
notions (thing type, connection types, operation types, conditions) is used to describe
aspects of software. The notions are presented in glossaries. Thing types and connec-
tion types cover the structural aspects of software development. Operation types and
conditions focus on the functional and behavioural aspect [6].

To extract these concepts out of the tagging results, two additional tools are neces-
sary. A NIBA Dynamic Interpreter and a NIBA Static Interpreter were developed.
This paper focuses on the Dynamic Interpreter since it also covers some structural as-
pects.

Before the interpreter can extract the concept it has to do some core linguistic
work. The interpreter must assign syntactic functions and semantic roles to those
word groups which are identified as syntactic phrases by NIBA-TAG. This is quite
difficult task for German sentences because of (morpho-) syntactic problems in Ger-
man (free word order etc.). The interpreter makes linguistically motivated default de-
cisions based on verb class related predicate argument structures (see Section 2). The
assignments of the syntactic functions and semantic roles are then used for the inter-
pretation process. The results are shown in the right upper and lower part of the win-
dow. The interpretation process presupposes decisions about the interpretability of the
tagged sentences. Currently a first and simple model of four levels (level 0 — level 3)
was introduced:

Level 0: No interpretation of the sentence is possible at all. This means that the sen-
tence is written in such a way that the interpreter cannot find any structur¢
within the sentence which can be used for interpretation (see level 1).

Level I: At least one of the two parts implication and/or condition is found.
Level 2:  Verbs are found, but cannot be associated with arguments.

Level 3: Candidates for verb arguments are recognized for the verb (if there is only
one in the sentence) or for at least one verb (if there are more of them in the
sentence).



Extended Tagging in Requirements Engineering 53

m&lumpnw s 2WSchemasaml

Fio [Edx schoma
e e e e e e i i i S

normal

.80 e wird an die 3 Sentence structure

1. Wenn oin In der eumIEn, dann wird dem Besch,

2. Wenn dhe Beschwer e gerechifertit ist oder es 3ich um einen Stammikunden handeR, | Imascant

3. Wenn dic Beschwer de nicht begrundet Ist, dann wird ef sofort von Frau Maier behande!

trplicate

S0 watesteton
H D En enangender Beschwergernef
D) an Bescrwerdestte ng

[} £ 3R i | T

Status report: 4 of 4 sertences OK - 100 . { weiterleiten NSO

S M. 075 O T o3 £:0 0/niangender Beschwercbiie! wird 3n & ¢ BesthwerTeatted ng we tergal

0 Ein enlangender Beschwerernel wid 3n @0 Deschwerds
wetergetecet

ung

Thingtypes of the actual set v En

v Operation &
Change &

Oper ationstypes of the actual set ! L AET AN
o i vian N4 R PN

Cendtions of the actual set

Fig. 1 Main window of the interpreter

If a sentence can be interpreted on level 3, it is possible to derive KCPM notions.
This can be controlled in the right lower corner of the window. For each verb and its
arguments in the implication section (upper right part) the end user receives a default
interpretation. If the verb is an agentive verb then it is mapped to an operation-type.
The noun which is the syntactic subject of the sentence is mapped to the acting actor.
The nouns which could be the syntactic objects are mapped to parameters. If the verb
is not an agentive verb then it is interpreted as a condition. All the arguments of the
verbs in the sentence are listed as candidates for involved thing-types. Those argu-
ments which are possible thing types are filtered out based on a default filtering
mechanism. If the sentence “a person owns a car” is taken as a condition, then both
“person” and “car” are candidates for the involved thing-type but only one of these
nouns is chosen as an involved thing-type (person). The rest of the sentence “owns a
car” is then treated as the property of that thing-type necessary to fulfill a condition.

All interpreter results are understood to be “default”, i.e., the user can always over-
rule default decisions. For example, the user can change the type of each thing-type
(parameter, calling actor, acting actor) if he thinks that the default assumption is not
appropriate.

Furthermore, the tool currently distinguishes between sentences (sentence parts)
that are useful for interpretation and sentences which are not (‘/ill-ins™). In fact, the
tool assumes that every sentence should be interpreted. However, there is a check bpx
“Activated” which is “on” by default. If the user disables this check box, then the in-
terpretation result will not be transferred into in the final schema.



54

Flied! G., Kop Ch., Mayr H., Véhringer J., Weber G. and Winkler Ch.

In some cases (where the sentence fits with some given implicational sentence pat-

terns e.g., if/then constructs) the tool can also derive cooperation-types. The user then
has the possibility to relate conditions and operation-types to logical operators (or,
and, xor). Where possible, the tool gives hints about which of these operators should
be chosen, otherwise, the user has to do this manually.

5 Conclusion

In this article we described some aspects of semantic tagging in NIBA. The capability
of processing complex information units on different levels is certainly the main ad-
vantage of our tagging system, which is characterized by the following features:

A fine grained categorization system for open and closed German word classes.
Lexicon categories are subdivided into semantically motivated subclasses, la-
beled with attributes;

A fully functional lexical database with an integrated rule component for the op-
tional generation of full German inflectional forms is implemented;

Integration Export — and import functionality of the database component facilitat-
ing the import of simple structured excel sheets and export to XML, which can be
converted to a tagger specific lexicon LeXML, a Berkeley DB;

The linguistic tasks done by the tools presented above are a first step during the
computer supported extraction process of concepts for software development.

References

6

Brill, E.: A simple rule-based part of speech tagger In: Proceedings of the Third Confer-
ence on Applied Natural Language Processing, ACL, 1992.

Brants, T.: TnT - A Statistical Part-of-Speech Tagger. In: Proc. of the 6" Applied Natural
Language Processing Conference ANLP-2000. Seattle, pp. 224-231

Fliedl, G.: Natirlichkeitstheoretische Morphosyntax. Aspekte der Theorie und Implemen-
tierung. Habilitationsschrift. Gunter Narr Verlag. Tiibingen. 1999.

Fliedl. G.: Kop. Ch.: Mayerthaler. W.; Mayr, H.C.; Winkler, Ch.; Weber, G.; Salbrechter,
A.: Semantic Tagging and Chunk-Parsing in Dynamic Modeling. In: Meziane F.; Metais
E.: (eds.) Proceedings of the 9™ International Conference on Applications of Natural Lan-
guage Processing and Information Systems, NLDB2004, Salford UK, Springer LNCS
3316 pp. 421 - 426.

Fliedl. G.. Weber. G.: Niba-Tag - A Tool for Analyzing and Preparing German Texts. In:
Zanasi. A.. Brebbia C.A.; Ebecken, N.F.F.: Melli, P. (Ed.): Data Mining 2002 Bologna:
Wittpress September 2002 (Management Information Systems. Vol 6), pp. 331-337.

Kop C.. Mayr H.C.: An Interlingua based Approach to Derive State Charts form Natural
Language Requirements In: Hamza M.H. (Ed.): Proceedings of 7" IASTED International
Conference on Software Engineering and Applications, Acta Press, 2003. pp. 538-543.
Marcus, M. Santorini, B. and Marcienkiewicz, M.: Building a large annotated corpus ©
English: the Penn Treebank.. Computational Linguistics, 1993. ;
Schmid. H.: Probabilistic Part-of-Speech Tagging using Decision Trees. www.ims.uni-
stuttgart de/fip/pub/corpora/tree-taggerl.pdf, 1994: www.ifi.unizh.ch/stff/siclemat/man/
SchillerTeufel99STTS. pdf.



Extended Taggirg in Requirements Engineering 55

9. Schach. Stephen R.: An introduction to object-oriented analysis and design with UML and
the unified process. McGraw Hill, Boston. Mass.. 2004.
10. Schiller. A.: Teufel. S.: Stockert Ch.: Thilen Ch.: Guidelines fiir das Tagging deutscher

Textcorpora mit STTS.

11. Tufis. Dan: Mason, Oliver.: Tagging Romanian Texts: a Case Study for QTAG, a Lan-
guage Independent Probabilistic Tagger. Proceedings of the First International Conference
on Language Resources & Evaluation (LREC), 1998, pp. 589-596.

Appendix 1

STTS (Stuttgart-Tiibingen Tagset) vs. NIBA-Tagset and Feature-System (only some
example-verbtags are compared):

STTS Gloss Example NIBA tagset Attribute values

VVFIN finites Verb, [ich] lese tVag/2 Transitive [psl]. [sg].
voll [ind], [pres]

VVINF Infinitiv, voll gehen i\ Intransitive  [inf]. [statl]

VVINF Infinitiv. voll ankommen eV Ergative [inf]. [statl]

VVINF Infinitiv, voll trinken tVag/2 Transitive [inf]. [statl]

VVIZU Infinitiv mit zw,  auszuatmen iv Intransitive  [inf], [stat2]
voll

VVIZU Infinitiv mit ze,  anzukommen eV Ergative [inf], [stat2]
voll

VVIZU Infinitiv mit zu.  loszulassen tVag/2 Transitive [inf], [stat2]
voll

VVPP Partizip gegangen, gelesen [stat3]
Pertekt, voll

VAFIN finites Verb, [du] bist, [wir] AUX
aux werden )

VAIMP  Imperativ. aux  sei [ruhig!] Vcop [imp]

VAINF Infinitiv, aux werden, sein Vcop [inﬂ. [statl]

VAPP Partizip gewesen [inf]. [stat3]
Perfekt. aux

VMFIN  finites Verb, diirfen AUX [mod]. [ps1].
modal (p!] :

VMINF  Infinitiv, modal  wollen AUX [mod], [inf]

VMPP Partizip gekonnt, [er hat

Perfekt, modal

gehen] kénnen




